

Short-term Training Course

K-12 Level Fulfillment for CMU IPAS Application

For the International Engineering Program at Chiang Mai University

1. General Information

1.1 Course name	K-12 Level Fulfillment for CMU IPAS Application for the
	International Engineering Program at Chiang Mai University
1.2 Conducted by	Entaneer Academy and Chiang Mai International Engineering
	School, the Faculty of Engineering, Chiang Mai University

1.3 Course Facilitator/Coordinator

1)	Name-Surname	Assistant Professor Songyot Kitthamkesorn, D. Eng
	Position	Deputy Director of Entaneer Academy
	Tel.	095-6611641
	Email	<u>songyot.k@cmu.ac.th</u>
2)	Name-Surname	Assistant Professor Korrakot Yaibuathet Tippayawong, D. Eng
	Position	Director of Chiang Mai International Engineering School (CM-IES)
	Tel.	053-942051, 053-944101-3
	Email	korrakot@eng.cmu.ac.th
1.4 Number	of Participants	30 participants (Training will commence when a minimum of
		10 participants have registered).
1.5 Target Gr	oup	Pre-degree students (K-11 students who need 1 year of
		additional knowledge is comparable to K-12 and intend to
		enroll in the international engineering curriculum at Chiang
		Mai University)

2. Specific Course Information

2.1 Principles and Rationale

Due to the variations in educational systems across different countries, some students may lack one year of knowledge in the Thai/US K-12 (Grade 1-12) education system. According to the Ministry of Education's regulations regarding the equivalency of educational qualifications in Thailand and abroad at the basic education level, announced on 21 April 2020, in section 16, Universities are allowed to determine the criteria and qualifications for students based on suitability.

In this regard, Chiang Mai International Engineering School, the Faculty of Engineering, Chiang Mai University, aims to offer a short-term training course titled "K-12 level fulfillment for CMU IPAS application." This course will integrate K-12 level knowledge with fundamental content in the first year (Term 1) of the undergraduate International Engineering Curriculum of the Faculty of Engineering. The objective is to equip students who have completed the training and achieved the required assessment criteria with the eligibility to apply for admission into the International Engineering curriculum of the Faculty of Engineering through the Chiang Mai University International Program Admission System (CMU-IPAS). Students who meet the minimum assessment criteria in at least three of the four subjects will be eligible for admission into the international Engineering curriculum without needing a written examination or interview. Furthermore, if applicants meet the admission criteria set by Chiang Mai University, they will also be able to accumulate credits for the International Engineering curriculum of the Faculty of Engineering curriculum of the Faculty of Engineering curriculum of the Faculty of Engineering curriculum of the International Engineering curriculum of the Faculty of Engineering curriculum of the International Engineering curriculum of the Faculty of Engineering curriculum of the International Engineering curriculum of the Faculty of Engineering. Chiang Mai University.

2.2 Purpose

To enhance the academic knowledge of students who lack one year of knowledge in their high school education (K-12) and the academic knowledge of fundamental subjects in the first year of the International Engineering curriculum of the Faculty of Engineering, Chiang Mai University.

2.3 Course Structure or Course Content

This course consists of a total of 195 hours, including 4 subjects. The details are as follows:

1) Calculus Preparation for Engineering	50 Hrs.
Equivalent to Course 206161 (Cal for Engineering 1)
2) Physics Preparation for Engineering	50 Hrs.
Equivalent to Course 207105 (Physics for Engineering)	ng 1)
3) Chemistry Preparation for Engineering	50 Hrs.
Equivalent to Course 203162 (Gen Chemistry for Er	ngineering)
4) Introduction to Material Engineering	45 Hrs.
Equivalent to Course 259103 (Engineering Material)	1

1. Calculus Preparation for Engineering Equivalent to Course 206161 (Cal for Engineering 1)				
Training Course Study Content	Lecture Hours	Course 206161 (Cal for Engineering 1) Study Content	Lecture Hours	
1. Vectors	5	1. Vectors	5	
 Derivative of functions of one variable and applications Indefinite and definite integrals and applications Set Logic 	16 24 2 2	 Derivative of functions of one variable and applications Indefinite and definite integrals and applications 	16 24	
6. Interest/Time Value of Money	1			
Total	50	Total	45	

Training Course Framework and Course Structure Table.

Troinin - C	euros Study Contont	Lecture	Course 207105 (Physics for Engineering		Lecture
Training C	ourse Study Content	Hours		1) Study Content	Hours
1. Structu	re and domain of physics	1	1.	Structure and domain of physics	1
2. Motion	of object	2	2.	Motion of object	2
3. Newtor	n's laws of motion	9	3.	Newton's laws of motion	9
4. Work a	nd energy	2	4.	Work and energy	2
5. Motion	of rigid body	2	5.	Motion of rigid body	2
6. Hydros ⁻	tatics and hydrodynamics	6	6.	Hydrostatics and hydrodynamics	6
7. Propert	ies of matter	3	7.	Properties of matter	3
8. Vibratic	ons and waves	4	8.	Vibrations and waves	4
9. nature	of sound and wave	4	9.	nature of sound and wave	4
10. Thermo	odynamics and kinetic	9	10.	Thermodynamics and kinetic	9
theory				theory	
11. Tempe	rature and heat	3	11.	Temperature and heat	3
12. Momer	ntum and Collisions	1			
13. Mechar	nical Equilibrium	1			
14. Simple	Harmonic Motion	1			
15. Circular	motion	1			
16. Plane r	otation	1			
	Total	50		Total	45

2. Physics Preparation for Engineering Equivalent to Course 207105 (Physics for Engineering 1)

3. Chemistry Preparation for Engineering Equivalent to Course 203162 (Gen Chemistry for Engineering) Lecture Course 206161 (Gen Chemistry for 1) Lecture Course 206161 (Gen Chemistry for 1)				
Training Course Study Content	Hours	Study Content	Hours	
1. Chemical reactions and	1	1. Chemical reactions and	1	
stoichiometry		stoichiometry		
2. Gases	3	2. Gases	3	
3. Liquids	4	3. Liquids	4	
4. Solids	4	4. Solids	4	
5. Phase diagrams and solutions	4	5. Phase diagrams and solutions	4	
6. Chemical equilibrium and Ionic	4	6. Chemical equilibrium and Ionic	4	
equilibrium		equilibrium		
7. Atomic structure and the		7. Atomic structure and the		
periodic table	5	periodic table	5	
8. Chemical bonding		8. Chemical bonding		
	4		4	

9. Representative elements and	4	9. Representative elements and	4
transition metals		transition metals	
10. Nuclear chemistry	4	10. Nuclear chemistry	4
11. Reaction rate	4	11. Reaction rate	4
12. Chemical reactions and	4	12. Chemical reactions and	4
stoichiometry		stoichiometry	
13. Electrochemistry	2.5		
14. Biomolecular	2.5		
Total	50	Total	45

	4) Introduction to Material Engineering Equivalent to Course 259103 (Engineering Material)					
-	Training Course Study Content		Lecture Course 259103 (Engineering Materials)		Lecture	
				Study Content	Hours	
1.	Chemical reactions and	3	1.	Chemical reactions and	3	
	stoichiometry			stoichiometry		
2.	Gases	3	2.	Gases	3	
3.	Liquids	3	3.	Liquids	3	
4.	Solids	6	4.	Solids	6	
5.	Phase diagrams and solutions	3	5.	Phase diagrams and solutions	3	
6.	Chemical equilibrium and Ionic	3	6.	Chemical equilibrium and Ionic	3	
	equilibrium	6		equilibrium		
7.	Atomic structure and the periodic		7.	Atomic structure and the periodic	6	
	table	6		table		
8.	Chemical bonding		8.	Chemical bonding	6	
9.	Representative elements and	3	9.	Representative elements and	3	
	transition metals	3		transition metals		
10.	Nuclear chemistry		10.	Nuclear chemistry	3	
11.	Reaction rate	6	11.	Reaction rate	6	
	Total	45		Total	45	

2.4 Course Evaluation

The assessment will be graded on an A-F scale, with each subject requiring a minimum attendance of 80%. The scoring and grading criteria will be consistent with those used in the equivalent subjects throughout the semester, considering both coursework and examination components.

2.4.1 Calculus Preparation for Engineering Course

Learning Outcome (LO):

- LO1 : Demonstrate knowledge and understanding of these topics: Set, Logic, and Interest/Time Value of Money.
- LO2 : Evaluate the limit of functions, and examine the continuity of functions.
- LO3 : Find the limits of functions and check for continuity of functions
- LO4 : Find derivatives of functions using the definition of derivative.
- LO5 : Find derivatives of functions using derivative formulae and applying the chain rule.
- LO6 : Apply derivatives on linear approximation, graph sketching, and finding extrema
- LO7 : Find definite and indefinite integrals of univariate functions.
- LO8 : Apply definite integral on finding areas between curves and volumes of solid of revolutions.

Grading Criteria: A-F Scale

The same criteria as those used for grading in the course 206161 in the semester with an examination will be applied, with the assessment methods and proportions as follows:

Learning Outcomes (LO)	Study Content	Assessment Method	Assessment Proportion
LO1	4, 5, 6	Quiz, Examination	10%
LO2-LO8	1,2	Quiz, Examination	55%

LO2-LO8	3	Quiz, Examination	35%
---------	---	-------------------	-----

The grading scale for assigning A-F grades will be based on the total score and will follow the following criteria.

Grade	Score range	Grade	Score Range
A	80-100	С	60-64
B+	75-79	D+	55-59
В	70-74	D	50-54
C+	65-69	F	00-49

2.4.2 Physics Preparation for Engineering Course

Learning Outcome: LO

- LO1 : Demonstrate knowledge and understanding of these topics: Momentum and Collisions, Mechanical Equilibrium, Simple Harmonic Motion, Circular motion, and Plane rotation.
- LO2 : Aware of values and ethics, including integrity, sacrifice, and honesty. Have academic and professional ethics and conduct.
- LO3 : Have discipline, punctuality, and self-responsibility towards oneself and society. Respect rules and regulations of organizations and society.
- LO4 : Have a sense of responsibility for continuous personal and professional development.
- LO5 : Have the skills for using the necessary tools appropriately related to information and communication technology.
- LO6 : Have knowledge and understanding of important principles and theories in the studied content.
- LO7 : Able to analyze problems, apply knowledge and skills, and use appropriate tools to solve problems.

- LO8 : Able to integrate knowledge in the field of study with knowledge from other related disciplines.
- LO9 : Think critically and systematically.
- LO10 : Able to research, gather, study, analyze, and summarize issues for creative problem-solving.
- LO11 : Able to solve problems using mathematical information or apply statistics creatively to solve related problems.

Grading Criteria: A-F Scale

The same criteria as those used for grading in course 207105 in the semester with an examination will be applied, with the assessment methods and proportions as follows:

Learning Outcomes (LO)	Study Content	Assessment	Assessment
		Method	Proportion
LO1	12-16	Quiz, Examination	10%
LO2 - LO5	1-10	Homework	10%
LO6 – LO11	1-10	Quiz, Examination	80%

The grading scale for assigning A-F grades will be based on the total score and will follow the following criteria.

Grade	Score range	Grade	Score Range		
A	80-100	60-64			
B+	75-79	D+	55-59		
В	70-74	D	50-54		
C+	65-69	F	00-49		

2.4.3 Chemistry Preparation for Engineering Course

(Learning Outcome: LO)

LO1 Demonstrate knowledge and understanding of K-12 level of these topics: Electrochemistry, and Biomolecular

- LO2 Have knowledge and understanding of the principles and important theories in the studied content.
- LO3 Able to analyze problems, apply knowledge and skills, and use appropriate tools to solve problems.
- LO4 Think critically and systematically.
- LO5 Able to research, gather, study, analyze, and summarize issues for creative problem-solving.
- LO6 Able to solve problems using mathematical information or apply statistics creatively to solve related problems.

Grading Criteria: A-F Scale

The same criteria as those used for grading in course 203162 in the semester with an examination will be applied, with the assessment methods and proportions as follows:

Learning Outcomes (LO)	Study Content	Assessment	Assessment	
Learning Outcomes (LO)	Study Content	Method	Proportion	
LO1	13, 14	Quiz, Examination	10%	
LO2 – LO6	1-14	Examination	40%	
LO6 - LO11	1-14	Examination	50%	

The grading scale for assigning A-F grades will be based on the total score and will follow the following criteria.

Grade	Score range	Grade	Score Range		
A	80-100	С	60-64		
B+	75-79	D+	55-59		
В	70-74	D	50-54		
C+	65-69	F	00-49		

2.4.4 Introduction to Material Engineering Course

Learning Outcome: LO)

- LO1 To provide students with knowledge and understanding of various types of engineering materials.
- LO2 To equip students with general foundational knowledge of engineering materials, serving as a basis for further studies at higher levels.
- LO3 To enable students to understand and explain the properties of various types of engineering materials and their applications.
- LO4 To enable students to describe the manufacturing processes for engineering products that utilize engineering materials.

Grading Criteria: A-F Scale

The same criteria as those used for grading in course 259103 in the semester with an examination will be applied, with the assessment methods and proportions as follows:

Learning Outcomes (LO)	earning Outcomes (LO) Study Content		Assessment Proportion		
LO1 – LO4 1-11		Quiz	15%		
LO1, LO2 1-6		Midterm Examination	40%		
LO3, LO4 7-11		Final Examination	45%		

The grading scale for assigning A-F grades will be based on the total score and will follow the following criteria.

Grade	Score range	Grade	Score Range		
A	80-100	С	60-64		
B+	75-79	D+	55-59		
В	70-74	D	50-54		
C+	65-69	F	00-49		

3. Keywords and Brief Course Descriptions

3.1 Keywords for Searching

Entaneer Academy, K-12 Level Fulfillment, Preparation Courses for Engineering Programs

3.2 Brief Course Descriptions

Short-term Supplementary Training Course for Fundamental Academic Knowledge Enhancement for K-12 level to pursue a bachelor's degree in the International Engineering Program of the Faculty of Engineering, Chiang Mai University. The course consists of 4 subjects as follows:

- Calculus Preparation for Engineering (equivalent to course 206161 Calculus for Engineering
 1)
- 2. Physics Preparation for Engineering (equivalent to course 207105 Physics for Engineering 1)
- 3. Chemistry Preparation for Engineering (equivalent to course 203162 General Chemistry for Engineering)
- 4. Introduction to Material Engineering (equivalent to course 259103 Engineering Material)

4. Application period

Applications Open	August 15, 2023, at 08.30.
Applications Close	October 15, 2023, at 16.30.

5. Payment period

October 20 - November 3, 2023, at 17:00.

6. Duration and Timeframe of Training, Training Format, and Training Venue

Duration and Timeframe	Start date: December 4, 2023. End date: May 15, 2024.
Training Format	Onsite
Training Venue	Faculty of Engineering, Chiang Mai University (The building and
	room numbers will be announced later.)

<u>Examination Date</u> วันที // ระบุวันที

7. Course Result Announcement Date

Announcement of Results within May 14, 2024

8. Course type

A curriculum for accumulating credits in the following courses:

1)	Course 206161 (Cal for Engineering 1)	3 credits
2)	Course 207105 (Physics for Engineering 1)	3 credits
3)	Course 203162 (Gen Chemistry for Engineering)	3 credits
4)	Course 259103 (Engineering Material)	3 credits

9. Tuition fee 45,000 Baht per person or ~1,300 USD (Tuition fee of 44,400 Baht per person plus university fees of 600 Baht per person)

10. Source of Budget

Curriculum management is supported by the budget allocated from the student registration fees and from the financial support provided by the Faculty of Engineering, Chiang Mai University.

11. Contact information for Inquiries

1)	Contact	Chiang Mai International Engineering School (CM-IES)
	Tel.	053-942-051, 053-942-052
	Email	<u>cm-ies@eng.cmu.ac.th</u>
2)	Contact	Entaneer Academy
	Tel.	053-942095
	Email	EntaneerAcademy@gmail.com
3)	Contact	Miss Tunyamon Wanalaiat
	Position	General Administration Officer
	Tel	098-9163532
	Email	tunyamon.wa@cmu.ac.th

12. Qualification Criteria for Applicants

- 1. Completed, or are currently studying in the last year of, a K-11 curriculum outside of Thailand
- Must have a minimum score of 65 percent in Mathematics and Physics on transcript or Matriculation Examination Pass Certificate
- 3. English language Requirements:

3.1. Native English speakers or students who come from a country where English is an official language <u>or</u>

3.2. Have studied or are currently studying in an international school where English is the primary language of instruction for at least 2 years <u>or</u>

3.3. Have a minimum score on an English language proficiency test or one of the following standardized tests as listed in the table below.

IELTS	ILETS	TOEFL			TOIEC	SAT	Duolingo	CMU-	CU-	TU-	TU-
	indicator	PBT/	СВТ	iBT		EBWR		eTEGS	TEP	GET	GET
		ITP	CDT	יטי						(PBT)	(CBT)
5.0	5.0	500	173	61	600	320	85	65	73	600	68

13. Supporting Documents for Applicant Evaluation

- 1) Copy of the latest High School Transcript showing current academic performance.
- 2) Copy of the Educational Diploma (if available).
- 3) English Proficiency Qualification Certificate according to the English proficiency qualification table (if not exempted).
- 4) Copy of Passport.
- 5) Statement of Purpose: Which field of engineering are you interested in and why?
- 6) Student Visa Application Submission Detail
 - 6.1 Address of the Royal Thai Embassy/ Royal Thai Consulate-General to apply for Student Visa
 - 6.2 Address to send Supporting Documents for Visa Application to.

14. Learning Category

Science / Technology / Innovation